## Yb:YAG MOPA System and Non-linear Frequency Conversion Module for Remote Wind Sensing and DIAL based Atmospheric Ozone

**Concentration Measurements** 

Arun Kumar Sridharan,

R. Roussev, K. Urbanek, Y.W. Lee, S.Sinha

Prof. M. M. Fejer, Prof. Robert L. Byer

Stanford University

Prof. S. Saraf

Rochester Institute of Technology

Sponsors: NASA (ATIP Program)
DARPA (MURI Program)

NASA/ESTO LIDAR Community Forum, January 10, 2006

## Global wind velocity sensing

#### **Measurement specifications**

100 km hor. res., 1 km ver. res., 1 m/s velocity accuracy, eye safety.

#### Laser transmitter specifications for wind sensor

- Energy: 2J/pulse

- Repetition rate: 10

Hz

- Pulse width:  $\sim 1 \mu s$ 

- Linewidth: 1 MHz

- Satellite

altitude:400 km



-  $\lambda > 1.4~\mu m$  •Currently 2  $\mu m$  sources developed by NASA/Langley are most advanced in development

#### DIAL based ozone detection

- Tropospheric
   Ozone(O<sub>3</sub>), NO<sub>2</sub>,
   SO<sub>2</sub> detection
  - 1-2 km vertical resolution.

# Laser transmitter specifications for Ozone detector

- Energy: 0.5 J/pulse
- Repetition rate: 10 Hz
- Pulse width: ~ 1μs
- $\lambda = 305 \text{ nm}, 320 \text{ nm}$



Stanford Approach: Yb:YAG Laser + Non-linear Frequency Conversion



#### Outline

- Yb:YAG Laser Engine
  - Choice of gain media, pulse format, design and experimental results
- Nonlinear Frequency Conversion Module
  - Nd:YAG MOPA Testbed
  - Waveguide PPLN OPA
  - Bulk PPLN OPA
  - Future directions for pulse energy scaling
- Conclusion

### 1.03 µm Yb:YAG Laser Engine



## Challenges to Energy Storage/Extraction



- $E_{\text{stored}} = g_0 l \; F_{sat} A \longrightarrow \text{High } g_0 l \text{ is needed for energy storage.}$
- $F_{sat} < F_{input} < F_{damage}$  → Needed for efficient extraction in power amplifiers



#### Why Yb:YAG?

$$\frac{\lambda_{p_-940\,nm}}{\lambda_{l_-1030\,nm}} < 9\%$$

means high efficiencies are possible.



Energy stored  $\propto P_{pump} \tau$ 

Long  $\tau$  means, fewer diodes are required and lower costs

$$g_0 l = \Delta N \sigma_e l < 3$$

Parasitic oscillation limit

• 
$$E_{\text{stored}} = g_0 l F_{sat} A$$

 $\rightarrow$  10 × smaller  $\sigma_e$  compared to Nd:YAG leads to 10 × higher energy storage

## Why 1 µs Pulses?

- 1. Transform limited 1 MHz line-width, required for 1 m/s global wind velocity resolution.
- 2. Surface damage fluence (J) of YAG and PPLN\* scales as  $t^{1/2}$

$$J_{damage\_1\mu s} > 10 J_{damage\_10ns}$$
 Available

 $F_{sat} < F_{input\_1 \mu s} < F_{damage\_1\mu s}$  from traditional Q-shigh-pulsed switched lasers

Enables high-pulsed energy non-linear frequency conversion

\* AR coated PPLN crystals show  $J_{damage} = 10 - 15 \text{ J/cm}^2$  for 20 ns pulses

## End pumped slab geometry\*



- Nearly complete absorption of pump light.
- Better mode overlap => Higher gain & efficiency
- Uniform gain across beam => better mode quality

#### Slab Design Issues

- 1. Pump light coupling and absorption
- 2. Minimizing spatial distortion of signal beam
- 3. ASE & Parasitic Oscillation suppression

Parasitic suppression is accomplished by special cladding on all four large surfaces

### Slab Batch Fabrication Procedure



Cost/slab < \$ 2000

Should enable wider use of slabs in commercial systems

## Yb:YAG slab amplifier gain



This key result should enable an efficient high pulse energy Yb:YAG MOPA

#### Nd:YAG MOPA Test-bed

#### for Nonlinear Frequency Conversion: Experimental Setup



AOM can generate pulses with  $\tau \ge 200$  ns

Output: >100 mJ, 1 μs pulses @ 1.064 μm

## PPLN based Optical Parametric Amplifier (OPA) System Schematic



Conversion efficiency in waveguides 2-3 orders of magnitude higher than in bulk mixing

High gains in waveguide pre-amplifier offers potential for easier depletion of pump energy in bulk OPAs, and minimizes # of components.

### Waveguide OPA:Results



Experimental result: 45 dB gain

Propagation loss at 1.55  $\mu m$ -  $\sim 0.14$  dB/cm

MF length=1.2mm, MF width=2.5 μm

Quadratic taper length=4.5mm

QPM length=56 mm

normalized efficiency ~10 %/Wcm<sup>2</sup>

Theoretical expectation: 14%/Wcm<sup>2</sup>

Tuning curve FWHM ~ 1 nm

#### Bulk PPLN OPA



## Future potential scaling of OPA



#### Conclusion

#### Key Laser Engine Achievements

- Demonstrated record 12 dB ( $g_0l = 2.84$ ) gain in end-pumped zig-zag slab amplifier.
- Scaling of aperture size and available pump power should enable efficient scaling of Yb:YAG MOPA to Joule energy levels

#### Non-linear frequency conversion module developments

- 100 mJ/ms Nd:YAG Testbed MOPA enabled
  - Testing of PPLN RPE waveguide OPA's with 45 dB gain.
  - Testing of first Bulk PPLN OPA with 2 mJ pulses at 1.55 mm
- Pulse energy scaling of OPA's by increasing aperture size (PPSLT,PPSLN ?)

will be key to meeting end remote sensing requirements.